NYU

Lecture 11:
Hardware Accelerator for DNN Training

Notes

e Project meeting, please sign up!
e Final project presentation
o | will send out a form for you to select the date and time
options.

NYU SAI LAB

Recap

Matrix Multiplication with Transposition
Hardware design for Nonlinear Blocks
System optimization of LLMs

Popular transformer accelerator design
o SpAtten

o EdgeBert

o Olive

NYU SAI LAB

Topics

e Computation during backward propagation
e Hardware architecture for backward propagation design

e Popular DNN training accelerator design
o FAST
o CAMEL
o ADA-GP
o Procrustes

NYU SAI LAB

Neural Network Training

Forward pass Backward pass

e The peak memory grow linearly as the layer depth increases.
e The backward propagation involves more computations

NYU SAI LAB

Training Flow

EXE . w Softlmax
Scale
L!T—](Lxl—)
X: (LxE) Q:(LxE K:(LxE) (LxL) [QT QK —] y
Reshape Reshape Reshape
Y =XW | T(LX]E) | f (LX]E) | T(LX]E)
(linear] [linear | [linear |
L: number of tokens
E: embedding dimension (__Layernorm]

X (L<E)

NYU SAl LAB

Training Flow: Linear Layer

E

I_IXE

Forward propagation

E

w

NYU SAI LAB

L

E

Y

E x

Y: (LxE)

X: (LxE)
Y = XW

Forward

Training Flow: Linear Layer

E E
E
L X E WT -
E e E
L xE| W =y Backward propagation: weight
gradient computation

E
Forward propagation L E

Backward propagation: input
gradient computation

NYU SAI LAB

Y: (LxE)

=

X: (LxE)
Y = XW

plemyoeqg

Training Flow: Self-Attention

m
—

Forward propagation Backward propagation

NYU SAI LAB

=
QKT | 2

2

Q: LxE K: LxE

plemyoeqg

Training Flow: Softmax

ds

— =diag(s) - ss! S: LxL
: dz w
5= E Fori=1,2 N o|(3
I = SN-1_z; TR sl =
2o € o[- —sies -sies Softmax SIE
el A S2—S2 -s3-83 LPlla

— 83481 —S83 * 82 5 Sha Sg Z: LXL

Forward propagation Backward propagation

NYU SAI LAB

10

Training Flow: Normalization

s=a>—F2 1
o5

si:aZi—I—B

Mz Z]%Zi

o, — \/Zi(zi_ﬂz)2
N

Forward propagation

NYU SAI LAB

dL d
B zz: ds;

dL
da - Z dsl

Backward propagation

I
[LayerNorm]

Forward

—
-

plemyoeg

Topics

e Computation during backward propagation
e Hardware architecture for backward propagation design

e Popular DNN training accelerator design
o FAST
o CAMEL
o ADA-GP
o Procrustes

NYU SAI LAB

In-place Transposed Matrix Multiplication

E

w

I_IXE

Forward propagation

NYU SAI LAB

E

Y

I_IXE

Backward propagation: weight
gradient computation

E

WT

E E
L

E

VW

Backward propagation: input
gradient computation

13

Forward Pass for Convolutional Layer

Convolution View Matrix View
C.
- C N
Forward P i i ﬁ i i
orwar ass -
W : = g W: Baw| X | XC| W |=ppw

Compute outputY B i i

e Assume a weight kernel size of 1x1.

NYU SAI LAB

Backward Pass for Convolutional Layer

Backward Pass
Compute Activation
gradients VX

NYU SAI LAB

BHW

vY

X N

WT

- I

Backward Pass for Convolutional Layer

Backward Pass

Compute
weight
gradients VW

NYU SAI LAB

C

B
' H
. X

o

B N
e
Wi =g
T =

BHW

vY

VW

In-place Transposed Matrix Multiplication

e In the training of neural networks, we need to perform transposed matrix multiplication
e Instead of using a separate hardware for matrix transposition, transposed matrix
multiplication can be performed using a systolic array.

C N N
N C
- T —
Biw | X | X | W | = gaw| Y BHw [ZY | X N| W' | = ghw
N
BHW N
= C|VW

NYU SAI LAB

17

In-place Transposed Matrix Multiplication

[1 4] [2 3] _ [2 7 e Weight stationary, input from bottom,
5 2]L0 1 1017 accumulation from left to right
X W Y
1 5 4 2
iy ey gey I IR s, B
Fw] T, 1 51 41 L2l fTwi v
2 0 2 0 2 0r—2 2 010 2 2 0 10 2
I Il T o o
5 X ‘2‘ 2
e The weights are preloaded into the systolic array, while the input
matrix is streamed into the array from bottom to top.
e The output is produced at the right. .

NYU SAI LAB

In-place Transposed Matrix Multiplication

24-
vY
13

el il

—=I N —= W |—

NYU SAI LAB

— O = = —

Weight stationary, input from left,
accumulation upwards

8
18 8 4
L T T Lux 1
2431} — 2341 3121 14, 31 |2
61 1 21 0o I of w1
1—{23o]— 2 o PP 2| —{o - 2 {0
1 i 1 i) i) t

To compute the input gradient, the data gradient is fed into the
systolic array from the left, and the output is produced at the top.

19

Systolic Array: Weight-Stationary Version

v

Z=W-X+Yy
V=X

NYU SAI LAB

E

Takes data (x and y) as input

w stays in the systolic cell
Performs a multiply-accumulate
operation

20

Systolic Array: Accumulation-Stationary Version

Takes data (x and y) as input

| I | B e
<
o

y z=y 7 e Accumulated result q stays in the systolic
— V=X — cell
q=Xy+dq e Performs a multiply-accumulate operation

e
X

NYU SAI LAB n

Systolic Cell

\'

1

—

y Z
X

Z
V /

h&xy+h)
‘ x=4 &q Is stored in
the MAC

NYU SAI LAB

Systolic Cell

\'

1

—

y Z
X

Z
V /

~
\
[

'\/q\‘l: Xy +{
‘ x=4 &q Is stored in
the MAC

NYU SAI LAB

Systolic Cell

4

2 2
4

—

1

Z
V /

~
\
[

"/C]\‘l: 4-2 +|
‘ x=4 &q Is stored in
the MAC

NYU SAI LAB

Systolic Cell

NYU SAI LAB

AN

O < N

oo A~DN

X
1
N

— I 1 Il

In-place Transposed Matrix Multiplication

[] [3 4] [8 14] e Input from left and bottom, accumulation
4 2 14 20 stationary.
t 1 1 1 1 51 41 r 2
2 4-—{0}—o 2 4—J0 {0 > {4140 14}2-{162 14 —{202
ro T, 1 SN [2 [yw
13 0 0 1 3 0 8 12 8 14 8 14
. o T T T
X 4 5 4
5 2 2
e To compute the weight gradient, the data gradient is input from the left side of
NYU SAl LAB the systolic array, while the input activations are fed from the bottom. The -

resulting weight gradients are accumulated and stored within the systolic cells.

Topics

e Computation during backward propagation
e Hardware architecture for backward propagation design

e Popular dnn training accelerator design
o FAST
o CAMEL
o Tensordash
o Procrustes

NYU SAI LAB

22

24

e The Dot product is performed using BFP format.

14 | X
22X |24 +
2 |

26

38

e Compare with floating point (FP) format, block floating point (BFP) perform exponent
additions and mantissa alignments only at the group level, rather than at the individual

elements level.

NYU SAI LAB

28

Fast First, Accurate Second Training

e Previous literature has demonstrated that adding zero-mean Gaussian noise to the
weight gradient VW can reduce overfitting and improve the convergence of training.

e Decreasing the variance of the noise over iterations achieves better performance than
using fixed Gaussian noise throughout training.

e \We hypothesize that a similar effect can be achieved by adjusting the BFP precision of
weights, activations, and gradients from low to high precisions over training.

Zhang, Sai Qian, Bradley McDanel, and H. T. Kung. "Fast: Dnn training under variable precision block floating point with

NYU SAI LAB stochastic rounding." 2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2022. %°

Variable Precision Training

Temporal precision change

© © o ©
e d B 9
n o wu o

Validation Accuracy (%)
S
o

—— Temporal Low-to-High

—— Temporal High-to-Low
M

0

25 50 75
Training Epoch

100

Validation Accuracy (%)

Layerwise precision change

85

80 1
75
70
65 1
60—

—— Layerwise Low-to-High
Layerwise High-to-Low

17

0

25 50 75
Training Epoch

100

e Under the Temporal High-to-Low scheme, we use FP32 for weights, activations, and gradients
for the first part of training, and lower-precision BFP for the second part of training

e Under the Layerwise High-to-Low scheme, we use FP32 precision for the first ten layers, and
lower-precision BFP for later layers

NYU SAI LAB

30

Variable Precision Training

BFP precision increases across
layer depth and training iterations

QP S E i R S
< high
g precision
o

>

®©
|
> low N
% precision

mantissa
—> bitwidth

DNN Training Iteration

e We progressively increase the BFP precision of weights, activations, and gradients along both
layer depth and training iterations

e We name this approach FAST (Fast First, Accurate Second Training)

NYU SAI LAB

31

FAST System Design

| Accumulator |

+ h S +

§ w ég? —~—{ MAC [l fMAC -] MAC [~ e Major components of FAST system:
§ < 5 T T T 5 _ o Systolic array with FAST multiplier and
@ 8 | [y mac | mac i minc | || T N % accumulator (fMAC)
g ¥ ¥ ¥ Ellg 2 o BFP converter
@ g % . N . :(5 8 o Accumulator and systolic array input
)§> % 3 —~— fMAC |-~ fMAC |~ -+ =~ fMAC [—~— generator
=118 . . .) o Memory subsystem

Systolic array data generator

Weight Data

SRAM SRAM

NYU SAI LAB i

FAST System Design

M1—
E1—

e fMAC operates on chunks of BFP mantissas (e.g., 2-bit chunks) to support

Y1

! Adder

v

tree d_)
Multiplier|

[Multiplier

=

[Multiplier

fMAC

—l:[iD—|_|_D—l Accumulator H—Qi

-0

-| Multiplier] .ﬂhle
-~.__|[Multiplier “—1

~J.

- YO0

EO Mo

variable-width mantissas in 2-bit increments

NYU SAI LAB

33

Evaluation

Layer 15

Layer 12 -
Layer 9 -
Layer 6 1
Layer 3 -

e FAST progressively increases the BFP precision across both layer depth and iterations during

the training process

NYU SAI LAB

20

40 60
Training Iteration (%)

NPNNPPN“

FAST BFP Precision (ResNet-18 on ImageNet) (W A, 2))

4)
4)
2)
4)
2)
2)

o)

34

Evaluation

ResNet-18 (ImageNet) TTA of 68%

~
N

1.00 1.86 2.27 2.92 3.85 5.69 8.51

()]
(o]
T
1
1
1
I
1
|
|
[
1
i
|

(=2}
H

FAST-Adaptive

Validation Accuracy (%)
()]}
o

—— MidBFP
—— MSFP-12
56 1 —— INT-12
J — bfloat16
521 ¢ —— Nvidia MP
)- —— FP32
48 : - - :
0 2 4 6 8

Normalized Training Time

e We use Time-to-Accuracy (TTA) as the evaluation metric to compare different approaches
e Our FAST approach achieves the lowest TTA across all the numeric formats

NYU SAI LAB

Topics

e Computation during backward propagation
e Hardware architecture for backward propagation design

e Popular dnn training accelerator design
o FAST
o CAMEL
o Tensordash
o Procrustes

NYU SAI LAB

Memory Efficient Neural Network Training

Forward pass Backward pass Normalized Number of Parameters
Storage during DNN Training
Memory Memory Memory
———————————— 1 [ittt
| ' Lo e ! ' : :
“““ TOutput TTT777 pOutput T 4 Output ResNet-18 x -\L‘Vetl.gh:.
Hl Aclivation
|G |t
I ResNet-50
Layer O Layer O
| (o) (o] V6616 i
| Input |

e The memory footprint grows proportional with the layer depth.
e On top of this, small edge devices typically have limited on-chip storage, leading to frequent and
costly accesses to off-chip memories.

NYU SAI LAB

Zhang, Sai Qian, et al. "CAMEL: Co-Designing Al Models and eDRAMs for Efficient On-Device Learning." 2024 IEEE
International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2024.

37

Memory Efficient Neural Network Training

Residual Architecture Reversible Architecture
) yiy y2
] *’@ Forward pass:
= y2 = F1(x1) + x2
y1 = F2(y2) + x1
F # | Backward Pass:
F X1 =y1 - F2(y2)
x2 = y2 - F1(x1)
X X1 X2

e Areversible residual network (RevNet) is a variant of the canonical residual
neural network (ResNet).

U 8 I L B Zhang, Sai Qian, et al. "CAMEL: Co-Designing Al Models and eDRAMSs for Efficient On-Device Learning." 2024 IEEE
N Y A A International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2024.

Memory Efficient Neural Network Training

Architecture

p Output iy o y2
Linear i
1 :'I
Reversible] / F-
Block :
1 / ‘
[
Reversible F1
Block |
f Input X1 X2

Operations

Forward pass:
y2 = F1(x1) + x2
y1 = F2(y2) + X1

Backward Pass:
X1 = y1 - F2(y2)
x2 = y2 - F1(x1)

1. Recompute
the input

y

X

2. Compute
input gradient

Jout

Reversible Reversible
Block Block

gin

3. Compute weight
gradient and update

Jout
»‘ Reversible
< Block
Weight

update

X

e The reversible architecture enables the backward pass computations to be performed without the need
to store the input activations.
e Given the output y, the input activations are first recomputed. Afterwards, the input and weight gradients
are computed with standard backward pass operations.

NYU SAI LAB

Zhang, Sai Qian, et al. "CAMEL: Co-Designing Al Models and eDRAMSs for Efficient On-Device Learning." 2024 IEEE
International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2024.

39

Memory Efficient Neural Network Training

Output
i e This approach in turn imposes higher compute
y Branch DNN demands
Concatenate| [.
Reversible
= Backbone DNN e We propose to judiciously train a subset of the
£ g . model parameters to minimize training.
Reversible — Pretrained
@ . DNN Block 4‘y
- e The backbone DNN is frozen during the
F1 = [Pretrained Q backward pass of the DNN.
DNN Block
Tl ke | — Fs o
Input : i e The normalization layers are removed from the
branch DNN to facilitate the training process.
Duplex DNN
U ‘8 I L Zhang, Sai Qian, et al. "CAMEL: Co-Designing Al Models and eDRAMs for Efficient On-Device Learning." 2024 IEEE
NY A AB International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2024.

40

Procrustes

init: W with w© ~ N(0, o)
output: W)

while not converged do e \We adapt a sparse training algor_ithm to be
_1 ndf (W=D x(-D) amenable to hardware acceleration; we then
T= {| Vit o s.t. w € W!rk} develop dataflow, data layout, and load
naf(W-D.xi-D) balancing techniques to accelerate it.
P = { p | st.we me} e Only a fixed percentage of the parameters
S = sort(T U P) (e.g., 10%) are ever allowed to change
mask = 1(S > S[k]) e During the each training iteration, the weights
w® = with the highest accumulated gradient survive
mask - (W(’_”—an(W“_”;x(’_”)) + mask - W©
t=t+1

NYU SAI LAB Yang, Dingqing, et al. "Procrustes: a dataflow and accelerator for sparse deep neural network training." 2020 53rd Annual 41
IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE, 2020.

hi

= |©
| sofe7 |(=
s &
1 &
I: r\?- %
¢ 10/eq @
s 3
w
e
S =
Q.
S
>
| 10/e7
Z 1e/e7
$ S
£ J0/e7
]
L
¥ Jofe7
: S
= |©
| sofe7 |(=)
HE2
+
Z 1ofeq

e We propose ADA-GP, which uses gradient prediction adaptively to speed up DNN training while
maintaining

accuracy.
e ADA-GP works by incorporating a small neural network to predict gradients for different layers of

a DNN model.

NYU 8 AI L AB Janfaza, Vahid, et al. "ADA-GP: Accelerating DNN Training By Adaptive Gradient Prediction." Proceedings of the 56th 42
Annual IEEE/ACM International Symposium on Microarchitecture. 2023.

Presentations

e On-Device Training Under 256KB Memory (Ankit)

e FlashDecoding++: Faster Large Language Model Inference on GPUs (Akshay, Su)
CAMEL.: Co-Designing Al Models and eDRAMs for Efficient On-Device Learning (Jahnauvi,
Isha)

e Procrustes: a Dataflow and Accelerator for Sparse Deep Neural Network Training
(Mohnish, Dae Sung)

NYU SAI LAB

43

https://docs.google.com/presentation/d/1F_35H4unSGcB41EFlaNgrKYJNwYCFC7fugAC1GNvOiQ/edit?usp=sharing
https://docs.google.com/presentation/d/1NEH8_ygOWwJh30nOrWuqsFcDg2stbSRCGeIJuS1fzEc/edit?usp=sharing
https://docs.google.com/presentation/d/1LcJGKXMX-RDZsGEM1AHS3xgXq70S9poiTMO2TjyVlsE/edit?usp=gmail
https://docs.google.com/presentation/d/1FjaasC4UHMg1tL00hErNpUtC3H1-LLMifa7BcVADzoU/edit?usp=sharing

