
Lecture 11:
Hardware Accelerator for DNN Training

2

Notes
● Project meeting, please sign up!
● Final project presentation

○ I will send out a form for you to select the date and time
options.

3

Recap
● Matrix Multiplication with Transposition
● Hardware design for Nonlinear Blocks
● System optimization of LLMs
● Popular transformer accelerator design

○ SpAtten
○ EdgeBert
○ Olive

4

Topics
● Computation during backward propagation
● Hardware architecture for backward propagation design
● Popular DNN training accelerator design

○ FAST
○ CAMEL
○ ADA-GP
○ Procrustes

5

Neural Network Training

Output

Memory

Layer 0

Input

Layer 1

Forward pass

Output

Layer 0

Memory

Layer 1

Memory

Layer 1

Layer 0

Memory

Layer 1

Layer 0

Output Output

Backward pass

Loss

● The peak memory grow linearly as the layer depth increases.
● The backward propagation involves more computations

6

Training Flow

W

X: (L✕E)

Y: (L✕E)

E✕E

Y = XW

QKT

Q:(L✕E
)

Z:(L✕L)

K:(L✕E)

linear linear linear

Reshape Reshape Reshape

Q K V
QKT

x
Reshape

linear

Softmax

Scale

+

Layernorm

Y

X

Softmax

(L✕L)

L: number of tokens
E: embedding dimension

(L✕E)

(L✕E) (L✕E)(L✕E)

(L✕L)

(L✕L)

(L✕E)

(L✕E)

(L✕L)

7

Training Flow: Linear Layer

X

E

E

E

Y=L W

E

L

Forward propagation

W

X: (L✕E)

Y: (L✕E)

Y = XW

Fo
rw

ar
d

B
ackw

ard

E✕

E

8

Training Flow: Linear Layer

X

E

E

E

Y=L W

E

L

Forward propagation

 XWT

E
E

E Y = L

L

E XT = Y W

E

L

E

L

E

E

Backward propagation: input
gradient computation

Backward propagation: weight
gradient computation W

X: (L✕E)

Y: (L✕E)

Y = XW

Fo
rw

ar
d

B
ackw

ard

9

Training Flow: Self-Attention

 KK

EE

L Z = L

L

L

Backward propagation

 QQ

EE

L Z = L

L

L

Fo
rw

ar
d

B
ackw

ard

QKT

Q: L✕E

Z:L✕L

K: L✕E

KTE

L

 Q = L

E

L

Forward propagation

 Z

L

10

Training Flow: Softmax

Fo
rw

ar
d

B
ackw

ard

Softmax

Z: L✕L
Forward propagation

S: L✕L

Backward propagation

11

Training Flow: Normalization

Fo
rw

ar
d

B
ackw

ard

LayerNorm

Forward propagation Backward propagation

12

Topics
● Computation during backward propagation
● Hardware architecture for backward propagation design
● Popular DNN training accelerator design

○ FAST
○ CAMEL
○ ADA-GP
○ Procrustes

13

In-place Transposed Matrix Multiplication

X

E

E

E

Y=L W

E

L

Forward propagation

 XWT

E
E

E Y = L

L

E XT = Y W

E

L

E

L

E

E

Backward propagation: input
gradient computation

Backward propagation: weight
gradient computation

14

Forward Pass for Convolutional Layer

Forward Pass
Compute output Y =

 Convolution View

B

H
W

C
C

H
W

N

BN X

C

C

N

BHW

N

Y=BHW W

Matrix View

● Assume a weight kernel size of 1✖1.

*

15

Backward Pass for Convolutional Layer

Backward Pass
Compute Activation

gradients X
=B

H

W

N
N

C B

H

W

C

 XWT

C
C

NBHW

N

 Y = BHW*

16

Backward Pass for Convolutional Layer

 Backward Pass
Compute

weight
gradients W

=N

H
W

B

C

H

W

B
N

C

BHW

C XT =BHW

N

 Y W
N

C*

17

In-place Transposed Matrix Multiplication

● In the training of neural networks, we need to perform transposed matrix multiplication
● Instead of using a separate hardware for matrix transposition, transposed matrix

multiplication can be performed using a systolic array.

X

C

C

N

BHW

N

Y=BHW W XWT

C
C

NBHW

N

 Y = BHW

BHW

C XT =BHW

N

 Y W
N

C

18

In-place Transposed Matrix Multiplication

3

1
5 4

2

1

2 0

3 1

2 0 210

717

X

W W Y
3

1

5 4
2

1

2 02

3
1

2

1

2 010
5 4

2

3 3
5 4

1

2 010
2

15

210

7
2

● Weight stationary, input from bottom,
accumulation from left to right

X

1 4
5 2

Y

= 2 7
10 17

W

2 3
0 1

● The weights are preloaded into the systolic array, while the input
matrix is streamed into the array from bottom to top.

● The output is produced at the right.

19

In-place Transposed Matrix Multiplication

● Weight stationary, input from left,
accumulation upwards

Y

3 4
1 2

X

= 18 4
8 2

WT

2 0
3 1

3 1

2 031

42 3 1

2 0

48
2

W W

18

X

Y
3 1

2 01

42

3

3 1

2 0

2

1 3

4 3 1

2 0 1

2

6 2

18

0

8
18

4

0

4 2

● To compute the input gradient, the data gradient is fed into the
systolic array from the left, and the output is produced at the top.

20

Systolic Array: Weight-Stationary Version

● Takes data (x and y) as input
● w stays in the systolic cell
● Performs a multiply-accumulate

operation

v

z = w·x + y
v = x

zy

x

21

Systolic Array: Accumulation-Stationary Version

● Takes data (x and y) as input
● Accumulated result q stays in the systolic

cell
● Performs a multiply-accumulate operation

v

z = y
v = x

q = x·y + q

zy

x

22

Systolic Cell

v

zy=2

x=4

z = y
v = x

q = x·y + q

q is stored in
the MAC

23

Systolic Cell

v

zy=2

x=4

z = y
v = x

q = x·y + 0

q is stored in
the MAC

24

Systolic Cell

4

2y=2

x=4

z = 2
v = 4

q = 4·2 + 0

q is stored in
the MAC

25

Systolic Cell

4

2y=2

x=4

z = 2
v = 4
q = 8

26

In-place Transposed Matrix Multiplication

● Input from left and bottom, accumulation
stationary.

W

= 8 14
14 20

Y

3 4
1 2

XT

1 5
4 2

0 0

0 031

42

1
5 4

2
X

Y
14 20

8 14

0 0

3 031

42
1

5 4
2

4 0

8 121

42
5 4

2

1

3

14 16

8 14

2

2

5

1

4
4 2

2

W

● To compute the weight gradient, the data gradient is input from the left side of
the systolic array, while the input activations are fed from the bottom. The
resulting weight gradients are accumulated and stored within the systolic cells.

27

Topics
● Computation during backward propagation
● Hardware architecture for backward propagation design
● Popular dnn training accelerator design

○ FAST
○ CAMEL
○ Tensordash
○ Procrustes

28

FAST

● The Dot product is performed using BFP format.
● Compare with floating point (FP) format, block floating point (BFP) perform exponent

additions and mantissa alignments only at the group level, rather than at the individual
elements level.

22
+ 14

+ 2
24

+ 4

- 9
= 22 24

+ 14 + 4
+

+ 2 - 9
= 26 + 38

x1, x2 y1, y2

29

Fast First, Accurate Second Training
● Previous literature has demonstrated that adding zero-mean Gaussian noise to the

weight gradient ∇W can reduce overfitting and improve the convergence of training.

● Decreasing the variance of the noise over iterations achieves better performance than
using fixed Gaussian noise throughout training.

● We hypothesize that a similar effect can be achieved by adjusting the BFP precision of
weights, activations, and gradients from low to high precisions over training.

Zhang, Sai Qian, Bradley McDanel, and H. T. Kung. "Fast: Dnn training under variable precision block floating point with
stochastic rounding." 2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2022.

30

Variable Precision Training
Temporal precision change Layerwise precision change

● Under the Temporal High-to-Low scheme, we use FP32 for weights, activations, and gradients
for the first part of training, and lower-precision BFP for the second part of training

● Under the Layerwise High-to-Low scheme, we use FP32 precision for the first ten layers, and
lower-precision BFP for later layers

31

Variable Precision Training
BFP precision increases across

layer depth and training iterations

DNN Training Iteration

D
N

N
 L

ay
er

 In
de

x high
precision

mantissa
bitwidth

low
precision

● We progressively increase the BFP precision of weights, activations, and gradients along both
layer depth and training iterations

● We name this approach FAST (Fast First, Accurate Second Training)

32

FAST System Design

...

...

... ...

...

...

... ...

fMAC fMAC fMAC

fMAC fMAC fMAC

fMAC fMAC fMAC

B
FP

C
on

ve
rte

r

Weight
SRAM

Data
SRAM

G
radient

S
R

A
M A

cc
um

ul
at

or

Accumulator

B
FP

C
onverter

Systolic array data generator

S
ystolic array data generator

● Major components of FAST system:
○ Systolic array with FAST multiplier and

accumulator (fMAC)
○ BFP converter
○ Accumulator and systolic array input

generator
○ Memory subsystem

33

FAST System Design

● fMAC operates on chunks of BFP mantissas (e.g., 2-bit chunks) to support
variable-width mantissas in 2-bit increments

34

Evaluation

● FAST progressively increases the BFP precision across both layer depth and iterations during
the training process

35

Evaluation

● We use Time-to-Accuracy (TTA) as the evaluation metric to compare different approaches
● Our FAST approach achieves the lowest TTA across all the numeric formats

36

Topics
● Computation during backward propagation
● Hardware architecture for backward propagation design
● Popular dnn training accelerator design

○ FAST
○ CAMEL
○ Tensordash
○ Procrustes

37

Memory Efficient Neural Network Training

● The memory footprint grows proportional with the layer depth.
● On top of this, small edge devices typically have limited on-chip storage, leading to frequent and

costly accesses to off-chip memories.

Zhang, Sai Qian, et al. "CAMEL: Co-Designing AI Models and eDRAMs for Efficient On-Device Learning." 2024 IEEE
International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2024.

Output

Memory

Layer 0

Input

Memory

Layer 1Layer 1

Output

Layer 0

Memory

Layer 1

Layer 0

Memory

Layer 1

Layer 0

Output Output

Forward pass Backward pass

1x

Normalized Number of Parameters
Storage during DNN Training

1.67x

6.6x

13.4x

ResNet-18

ResNet-34

ResNet-50

VGG-16

Activation
Weight

38

x2

y2

+

x1

+

y1

F2

F1

 Residual Architecture

+

x

y

F

 Reversible Architecture

● A reversible residual network (RevNet) is a variant of the canonical residual
neural network (ResNet).

Forward pass:
y2 = F1(x1) + x2

y1 = F2(y2) + x1

Backward Pass:
x1 = y1 - F2(y2)
x2 = y2 - F1(x1)

Zhang, Sai Qian, et al. "CAMEL: Co-Designing AI Models and eDRAMs for Efficient On-Device Learning." 2024 IEEE
International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2024.

Memory Efficient Neural Network Training

39

Reversible
Block

Weight
update

1. Recompute
the input

y

x

Reversible
Block

gout

gin

Reversible
Block

gout

2. Compute
input gradient

3. Compute weight
gradient and update

x

x2

y2

+

x1

+

y1

Forward pass:
y2 = F1(x1) + x2

y1 = F2(y2) + x1

Backward Pass:
x1 = y1 - F2(y2)
x2 = y2 - F1(x1)

Architecture
OperationsOutput

Reversible
Block

Reversible
Block

Linear

…

Input

F2

F1

● The reversible architecture enables the backward pass computations to be performed without the need
to store the input activations.

● Given the output y, the input activations are first recomputed. Afterwards, the input and weight gradients
are computed with standard backward pass operations.

Zhang, Sai Qian, et al. "CAMEL: Co-Designing AI Models and eDRAMs for Efficient On-Device Learning." 2024 IEEE
International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2024.

Memory Efficient Neural Network Training

40

● This approach in turn imposes higher compute
demands.

● We propose to judiciously train a subset of the
model parameters to minimize training.

● The backbone DNN is frozen during the
backward pass of the DNN.

● The normalization layers are removed from the
branch DNN to facilitate the training process.

Duplex DNN

Backbone DNN

Branch DNN

Zhang, Sai Qian, et al. "CAMEL: Co-Designing AI Models and eDRAMs for Efficient On-Device Learning." 2024 IEEE
International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2024.

Memory Efficient Neural Network Training

41

Procrustes

Yang, Dingqing, et al. "Procrustes: a dataflow and accelerator for sparse deep neural network training." 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE, 2020.

● We adapt a sparse training algorithm to be
amenable to hardware acceleration; we then
develop dataflow, data layout, and load
balancing techniques to accelerate it.

● Only a fixed percentage of the parameters
(e.g., 10%) are ever allowed to change

● During the each training iteration, the weights
with the highest accumulated gradient survive

42

ADA-GP

Janfaza, Vahid, et al. "ADA-GP: Accelerating DNN Training By Adaptive Gradient Prediction." Proceedings of the 56th
Annual IEEE/ACM International Symposium on Microarchitecture. 2023.

● We propose ADA-GP, which uses gradient prediction adaptively to speed up DNN training while
maintaining
accuracy.

● ADA-GP works by incorporating a small neural network to predict gradients for different layers of
a DNN model.

43

Presentations
● On-Device Training Under 256KB Memory (Ankit)
● FlashDecoding++: Faster Large Language Model Inference on GPUs (Akshay, Su)
● CAMEL: Co-Designing AI Models and eDRAMs for Efficient On-Device Learning (Jahnavi,

Isha)
● Procrustes: a Dataflow and Accelerator for Sparse Deep Neural Network Training

(Mohnish, Dae Sung)

https://docs.google.com/presentation/d/1F_35H4unSGcB41EFlaNgrKYJNwYCFC7fugAC1GNvOiQ/edit?usp=sharing
https://docs.google.com/presentation/d/1NEH8_ygOWwJh30nOrWuqsFcDg2stbSRCGeIJuS1fzEc/edit?usp=sharing
https://docs.google.com/presentation/d/1LcJGKXMX-RDZsGEM1AHS3xgXq70S9poiTMO2TjyVlsE/edit?usp=gmail
https://docs.google.com/presentation/d/1FjaasC4UHMg1tL00hErNpUtC3H1-LLMifa7BcVADzoU/edit?usp=sharing

