
Lecture 11: 
Hardware Accelerator for DNN Training
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Notes
● Project meeting, please sign up!
● Final project presentation

○ I will send out a form for you to select the date and time 
options.
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Recap
● Matrix Multiplication with Transposition
● Hardware design for Nonlinear Blocks
● System optimization of LLMs 
● Popular transformer accelerator design

○ SpAtten
○ EdgeBert
○ Olive
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Topics
● Computation during backward propagation
● Hardware architecture for backward propagation design
● Popular DNN training accelerator design

○ FAST
○ CAMEL
○ ADA-GP
○ Procrustes
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Neural Network Training
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● The peak memory grow linearly as the layer depth increases.
● The backward propagation involves more computations
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Training Flow
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Training Flow: Linear Layer
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Training Flow: Linear Layer
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Training Flow: Self-Attention 
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Training Flow: Softmax
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Training Flow: Normalization
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Topics
● Computation during backward propagation
● Hardware architecture for backward propagation design
● Popular DNN training accelerator design

○ FAST
○ CAMEL
○ ADA-GP
○ Procrustes
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In-place Transposed Matrix Multiplication
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Forward Pass for Convolutional Layer

Forward Pass
Compute output Y =

 Convolution View
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● Assume a weight kernel size of 1✖1.
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Backward Pass for Convolutional Layer
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Backward Pass for Convolutional Layer
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In-place Transposed Matrix Multiplication

● In the training of neural networks, we need to perform transposed matrix multiplication
● Instead of using a separate hardware for matrix transposition, transposed matrix 

multiplication can be performed using a systolic array.
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In-place Transposed Matrix Multiplication
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● Weight stationary, input from bottom, 
accumulation from left to right
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● The weights are preloaded into the systolic array, while the input 
matrix is streamed into the array from bottom to top. 

● The output is produced at the right.
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In-place Transposed Matrix Multiplication

● Weight stationary, input from left, 
accumulation upwards
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● To compute the input gradient, the data gradient is fed into the 
systolic array from the left, and the output is produced at the top.
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Systolic Array: Weight-Stationary Version

● Takes data (x and y) as input
● w stays in the systolic cell
● Performs a multiply-accumulate 

operation

v

z = w·x + y
v = x
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x
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Systolic Array: Accumulation-Stationary Version

● Takes data (x and y) as input
● Accumulated result q stays in the systolic 

cell
● Performs a multiply-accumulate operation
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Systolic Cell
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Systolic Cell
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Systolic Cell
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Systolic Cell
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In-place Transposed Matrix Multiplication

● Input from left and bottom, accumulation 
stationary.
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● To compute the weight gradient, the data gradient is input from the left side of 
the systolic array, while the input activations are fed from the bottom. The 
resulting weight gradients are accumulated and stored within the systolic cells.
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Topics
● Computation during backward propagation
● Hardware architecture for backward propagation design
● Popular dnn training accelerator design

○ FAST
○ CAMEL
○ Tensordash
○ Procrustes
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FAST

● The Dot product is performed using BFP format.
● Compare with floating point (FP) format, block floating point (BFP) perform exponent 

additions and mantissa alignments only at the group level, rather than at the individual 
elements level.
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Fast First, Accurate Second Training 
● Previous literature has demonstrated that adding zero-mean Gaussian noise to the 

weight gradient ∇W can reduce overfitting and improve the convergence of training.

● Decreasing the variance of the noise over iterations achieves better performance than 
using fixed Gaussian noise throughout training.

● We hypothesize that a similar effect can be achieved by adjusting the BFP precision of 
weights, activations, and gradients from low to high precisions over training.

Zhang, Sai Qian, Bradley McDanel, and H. T. Kung. "Fast: Dnn training under variable precision block floating point with 
stochastic rounding." 2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2022.
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Variable Precision Training
Temporal precision change     Layerwise precision change

● Under the Temporal High-to-Low scheme, we use FP32 for weights, activations, and gradients 
for the first part of training, and lower-precision BFP for the second part of training 

● Under the Layerwise High-to-Low scheme, we use FP32 precision for the first ten layers, and 
lower-precision BFP for later layers
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Variable Precision Training
BFP precision increases across 

layer depth and training iterations

DNN Training Iteration
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● We progressively increase the BFP precision of weights, activations, and gradients along both 
layer depth and training iterations

● We name this approach FAST (Fast First, Accurate Second Training)
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FAST System Design
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● Major components of FAST system:
○ Systolic array with FAST multiplier and 

accumulator (fMAC)
○ BFP converter
○ Accumulator and systolic array input 

generator
○ Memory subsystem
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FAST System Design

● fMAC operates on chunks of BFP mantissas (e.g., 2-bit chunks) to support 
variable-width mantissas in 2-bit increments
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Evaluation

● FAST progressively increases the BFP precision across both layer depth and iterations during 
the training process
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Evaluation

● We use Time-to-Accuracy (TTA) as the evaluation metric to compare different approaches
● Our FAST approach achieves the lowest TTA across all the numeric formats
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Topics
● Computation during backward propagation
● Hardware architecture for backward propagation design
● Popular dnn training accelerator design

○ FAST
○ CAMEL
○ Tensordash
○ Procrustes
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Memory Efficient Neural Network Training

● The memory footprint grows proportional with the layer depth. 
● On top of this, small edge devices typically have limited on-chip storage, leading to frequent and 

costly accesses to off-chip memories.

Zhang, Sai Qian, et al. "CAMEL: Co-Designing AI Models and eDRAMs for Efficient On-Device Learning." 2024 IEEE 
International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2024.
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● A reversible residual network (RevNet) is a variant of the canonical residual 
neural network (ResNet). 

Forward pass:
y2 = F1(x1) + x2

y1 = F2(y2) + x1

Backward Pass:
x1 = y1 - F2(y2)
x2 = y2 - F1(x1)

Zhang, Sai Qian, et al. "CAMEL: Co-Designing AI Models and eDRAMs for Efficient On-Device Learning." 2024 IEEE 
International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2024.

Memory Efficient Neural Network Training
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● The reversible architecture enables the backward pass computations to be performed without the need 
to store the input activations.

● Given the output y, the input activations are first recomputed. Afterwards, the input and weight gradients 
are computed with standard backward pass operations.

Zhang, Sai Qian, et al. "CAMEL: Co-Designing AI Models and eDRAMs for Efficient On-Device Learning." 2024 IEEE 
International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2024.

Memory Efficient Neural Network Training
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● This approach in turn imposes higher compute 
demands.

● We propose to judiciously train a subset of the 
model parameters to minimize training.

● The backbone DNN is frozen during the 
backward pass of the DNN.

● The normalization layers are removed from the 
branch DNN to facilitate the training process.

Duplex DNN

Backbone DNN

Branch DNN

Zhang, Sai Qian, et al. "CAMEL: Co-Designing AI Models and eDRAMs for Efficient On-Device Learning." 2024 IEEE 
International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2024.

Memory Efficient Neural Network Training



41

Procrustes

Yang, Dingqing, et al. "Procrustes: a dataflow and accelerator for sparse deep neural network training." 2020 53rd Annual 
IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE, 2020.

● We adapt a sparse training algorithm to be 
amenable to hardware acceleration; we then 
develop dataflow, data layout, and load 
balancing techniques to accelerate it.

● Only a fixed percentage of the parameters 
(e.g., 10%) are ever allowed to change

● During the each training iteration, the weights 
with the highest accumulated gradient survive
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ADA-GP

Janfaza, Vahid, et al. "ADA-GP: Accelerating DNN Training By Adaptive Gradient Prediction." Proceedings of the 56th 
Annual IEEE/ACM International Symposium on Microarchitecture. 2023.

● We propose ADA-GP, which uses gradient prediction adaptively to speed up DNN training while 
maintaining
accuracy.

● ADA-GP works by incorporating a small neural network to predict gradients for different layers of 
a DNN model.
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Presentations
● On-Device Training Under 256KB Memory (Ankit)
● FlashDecoding++: Faster Large Language Model Inference on GPUs (Akshay, Su)
● CAMEL: Co-Designing AI Models and eDRAMs for Efficient On-Device Learning (Jahnavi, 

Isha)
● Procrustes: a Dataflow and Accelerator for Sparse Deep Neural Network Training 

(Mohnish, Dae Sung)

https://docs.google.com/presentation/d/1F_35H4unSGcB41EFlaNgrKYJNwYCFC7fugAC1GNvOiQ/edit?usp=sharing
https://docs.google.com/presentation/d/1NEH8_ygOWwJh30nOrWuqsFcDg2stbSRCGeIJuS1fzEc/edit?usp=sharing
https://docs.google.com/presentation/d/1LcJGKXMX-RDZsGEM1AHS3xgXq70S9poiTMO2TjyVlsE/edit?usp=gmail
https://docs.google.com/presentation/d/1FjaasC4UHMg1tL00hErNpUtC3H1-LLMifa7BcVADzoU/edit?usp=sharing

